Learned in TRECVID 2020 PicSOM Team's Lessons

Jorma Laaksonen and Zixin Guo **Aalto University** Espoo, Finland 2020-12-08

Overview

- Experiments with datasets and features
- Stacked attention captioning model
- Submissions and results
- Observations & issues

Experiments with datasets and features

- We experimented with a selection training datasets ...
- COCO actually only images, but we used "fake" video features
- TGIF
- VATEX new addition this year and we wanted to study its advantage
- (MSR-VTT and MSVD had been used in earlier years, but dropped now)
- ... and features
- o ResNet-152
- ResNext-101
- 。 |3D
- ° C3D
- (ResNet-101, semantic category, audio and multimodal features had been used earlier, but dropped now)

Comparison of the datasets

dataset	type	items	captions
COCO	images	82783	414113
TGIF	videos	125713	125713
VATEX	videos	41250	825000

"Fake I3D features" for COCO images

- I3D features can be extracted only from videos
- Average of I3D features of the TGIF videos were used as "fake I3D features" for COCO images
- Final input features were always concatenation of individual features
- Benefits of "fake I3D features" for the model training:
- We can use also 414113 COCO captions

We can use genuine I3D features of TGIF and VATEX

A selection of results on VTT 2019 ground truth data

		×	×	×	000
×	×	×	×	×	⊩ JG
×	×	×	×		E X
×	×	×	×	×	Res
×	×	×			Res
	×	×	×	×	I3D
×					C3D
0.2151	0.2253	0.2263	0.2071	0.2049	METEOR
0.2345	0.2528	0.2812	0.2746	0.2348	CIDEr
0.1364	0.1518	0.1667	0.1610	0.1147	CIDErD
0.0397	0.0446	0.0446	0.0443	0.0319	BLEU-4

TRECVID 2019 result

		×	×	×	00
×	×	×	×	×	TG IF
×	×	×	×		VAT EX
×	×	×	×	×	Res Net
×	×	×			Res
	×	×	×	×	I3D
×					C3D
0.2151	0.2253	0.2263	0.2071	0.2049	METEOR
0.2345	0.2528	0.2812	0.2746	0.2348	CIDEr
0.1364	0.1518	0.1667	0.1610	0.1147	CIDErD
0.0397	0.0446	0.0446	0.0443	0.0319	BLEU-4

Adding VATEX dataset to COCO and TGIF improves

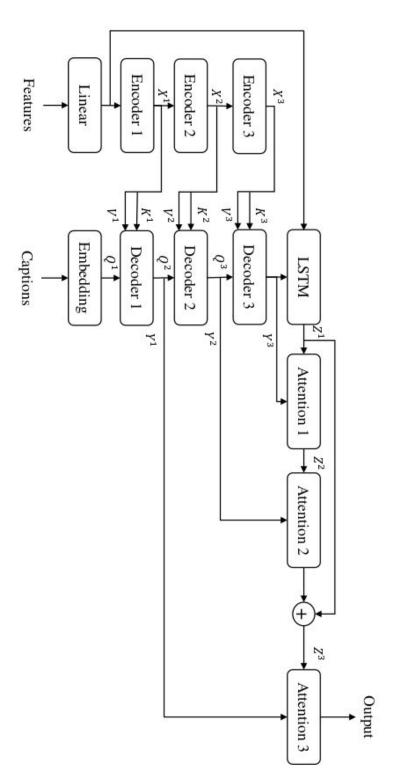
0.0397	0.1364	0.2345	0.2151	×		×	×	×	×	
0.0446	0.1518	0.2528	0.2253		×	×	×	×	×	
0.0446	0.1667	0.2812	0.2263		×	×	×	×	×	×
0.0443	0.1610	0.2746	0.2071		×		×	×	×	×
0.0319	0.1147	0.2348	0.2049		×		×		×	×
BLEU-4	CIDErD	CIDEr	METEOR	C3D	I3D	Res Next	Res Net	VAT EX	TG IF	000

Adding ResNext features to ResNet and I3D improves

0.0397	0.1364	0.2345	0.2151	×		×	×	×	×	
0.0446	0.1518	0.2528	0.2253		×	×	×	×	×	
0.0446	0.1667	0.2812	0.2263		×	×	×	×	×	×
0.0443	0.1610	0.2746	0.2071		×		×	×	×	×
0.0319	0.1147	0.2348	0.2049		×		×		×	×
BLEU-4	CIDErD	CIDEr	METEOR	C3D	I3D	Res	Res Net	VAT EX	TG	88

Using COCO data with TGIF and VATEX improves

		×	×	×	88
×	×	×	×	×	TG IF
×	×	×	×		EX EX
×	×	×	×	×	Res Net
×	×	×			Res
	×	×	×	×	I3D
×					C3D
0.2151	0.2253	0.2263	0.2071	0.2049	METEOR
0.2345	0.2528	0.2812	0.2746	0.2348	CIDEr
0.1364	0.1518	0.1667	0.1610	0.1147	CIDErD
0.0397	0.0446	0.0446	0.0443	0.0319	BLEU-4


I3D is better than C3D as a video feature

0.0397	0.1364	0.2345	0.2151	×		×	×	×	×	
0.0446	0.1518	0.2528	0.2253		×	×	×	×	×	
0.0446	0.1667	0.2812	0.2263		×	×	×	×	×	×
0.0443	0.1610	0.2746	0.2071		×		×	×	×	×
0.0319	0.1147	0.2348	0.2049		×		×		×	×
BLEU-4	CIDErD	CIDEr	METEOR	C3D	I3D	Res Next	Res Net	VAT EX	TG IF	88

Final selection of datasets and features

×		×	X 0.2253
× ×		×	X 0.2263
×		×	X 0.2071
×		×	X 0.2049
	< × × ×	X 0.2049 X 0.2071 X 0.2263	X 0.2049 0.2348 X 0.2071 0.2746 X 0.2263 0.2812
\times \times \times		0.2049 0.2071 0.2263 0.2253	0.2049 0.2348 0.2071 0.2746 0.2263 0.2812 0.2253 0.2528
	0.2049 0.2071 0.2263 0.2253		0.2348 0.2746 0.2812 0.2528
	0.2049 0.2071 0.2263 0.2253		0.2348 0.2746 0.2812 0.2528

Stacked attention captioning model

Stacked attention captioning model

Based on the Transformer attention model

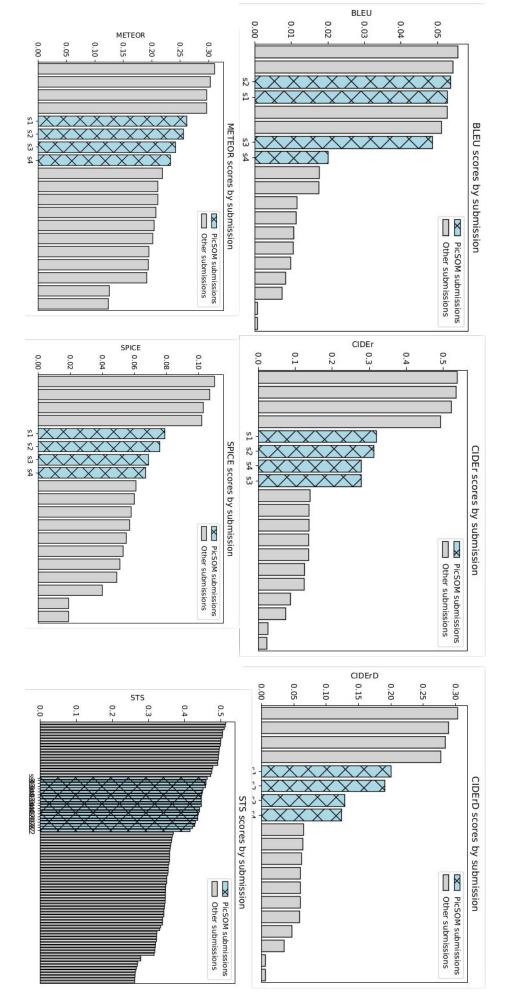
$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{model}}})V$$

Uses multihead attention $Multihead(Q, K, V) = concat(h_1, ..., h_k)W^O$ $h_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

- Intra-modality stacked attention for visual features in the encoder
- Inter-modality stacked attention from visual to textual features in the decoder
- Stacked attention from decoder outputs to caption generation

$$StackedAttention(Y^{N-j+1}, Z^j) = \alpha(Y, Z) \odot Z$$
 $\alpha(Y, Z) = \sigma(W[Y, Z] + b)$

Submissions


Model similar to our best VTT 2019 submission, trained with COCO+TGIF	4
Another well-performing stacked attention model, trained with COCO+TGIF	3 /
Model similar to our best VTT 2019 submission, trained with COCO+TGIF+VATEX	2
Our latest and best stacked attention model, trained with COCO+TGIF+VATEX	7
description	run

and self-critical reinforcement learning to finetune it with CIDEr-D score. In all submissions cross-entropy training was used to initialize the LSTM model TRECVID VTT 2018 ground truth data were used for validation.

Results

4	ω	2	_	run
0.2323	0.2414	0.2556	0.2617	METEOR
0.278	1 0.278	0.312	0.319	R CIDEr
0.124	0.129	0.191	0.200	CIDErD
0.0201	0.0485	0.0536	0.0527	BLEU-4
0.067	0.069	0.076	0.079	SPICE
0.4458	0.4581	0.4293	0.4406	STS

Plots

Observations & issues

- Using VATEX data was more beneficial than the stacked attention model
- Current version of stacked attention didn't allow to use also ResNext features
- Our implementation of self-critical reinforcement learning is deficient as it creates captions in which the last word of the sentence is lacking
- Finding and correcting the bug will raise our scores substantially...